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Abstract

We study the chaoticity and the diffusion of energy in one-dimensional disordered Klein-
Gordon (KG) lattices. Building on the research of [B. Senyange et al., Phys. Rev. E, 98:052229,
2019], we explore the effect of varying the disorder radius ∆ on the chaoticity and diffusion
of energy through the lattice from a single-site excitation. Computing the normal modes of
the linearised KG model, we find that normal mode distributions have a greater spread in more
ordered lattices. This suggests that energy diffuses faster through the nonlinear KG lattice when
decreasing ∆. Computing the evolution of the KG system up to 107 (dimensionless) time units
for various values of ∆, we find that the second moment m and participation number P of the
wave packet evolve according to the power laws m ∝ tαm and P ∝ tαP , respectively. While the
constant of proportionality in each case is found to increase when decreasing ∆, no relationship
between ∆ and either of the values αm, αP is conclusively determined. We also find that the
finite time maximum Lyapunov exponent (a commonly used chaos indicator) obeys a power law
Λ ∝ tαΛ , and furthermore that αΛ decreases with decreasing ∆, suggesting that more ordered
KG lattices are less chaotic.

∗Supervised by Associate Professor Haris Skokos.
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1 Introduction

1.1 A Simple Lattice Model

Imagine a set of N particles, each labelled by an index i ∈ {1, 2, . . . , N}. Furthermore, let each
particle be in its own attractive potential well Vi. What we have described is a system of N
independent oscillators. Now consider the situation where we line these particles up according to
their indices and connect each pair of neighbouring particles with a spring to form a one-dimensional
(1D) chain or lattice. Finally, we attach each of the sites at the endpoints of the lattice (site 1 and
site N) to an immovable wall. This setup is depicted in Figure 1.

...
0 1 2 N-1 N N+1

V1 V2 VN-1 VN

Figure 1: Diagram of a 1D lattice of oscillators, each with an on-site potential Vi (in red), coupled
to its nearest neighbours via springs (in blue). Sites 0 and N + 1 are in fact immovable walls which
are coupled to the endpoints of the lattice.

If the on-site potentials Vi and coupling spring potentials are of a certain form, then such a
physical system may be described mathematically by a so-called Klein-Gordon (KG) lattice model
with fixed boundary conditions (see Section 2 for more details). While this system of particles,
potentials, and springs might seem contrived, such lattice models can be applied to simple molecular
crystal structures including H2, N2, O2 and NO [1, p. 77]. Since the potentials Vi need not be the
same, such a disordered lattice may also be used to model the inhomogeneity of molecular bonds
and metals which contain impurities or irregularities in their structure [2].

In this thesis, we are particularly interested in a class of 1D KG lattices which will be defined
in Section 2.1. These involve quartic on-site potentials Vi with random variations for each site,
producing a disordered nonlinear lattice. By giving energy to a single site in the middle of the
lattice, we look at how energy diffuses through such a lattice over time in Section 5, as well as how
chaotic the system is. In particular, we do this while varying the amount of disorder in the lattice
to see what effect this might have. More fundamentally, we study this effect on a linear version of
the lattice in Section 4 to understand the behaviour of normal modes and how they apply to the
nonlinear KG lattice.

Before properly defining the KG model and discussing its properties, however, we must first
introduce the necessary tools for the task.

1.2 Autonomous Hamiltonian Systems

The KG model which we will study describes a special type of continuous dynamical system, known
as an autonomous Hamiltonian system. The state of an autonomous Hamiltonian system with N
degrees of freedom is described by its generalised position ~q = (q1, q2, . . . , qN )T and its conjugate
momentum ~p = (p1, p2, . . . , pN )T , where each component qi and pi is a real variable, and the super-
script T denotes the transpose. We represent this state by the vector ~x = (q1, . . . , qN , p1, . . . , pN )T

in a 2N -dimensional phase space [3, p. 68][4, p. 88]. Such a system has a Hamiltonian function
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H(~q, ~p), and the time evolution of the system is governed by Hamilton’s equations:

d~q

dt
=
∂H

∂~p
,

d~p

dt
= −∂H

∂~q
. (1)

For the class of dynamical systems which we will deal with, the Hamiltonian is given simply as the
sum of all the kinetic and potential energy contributions to the total system.

1.3 Chaos

While chaos in dynamical systems can be defined in various ways, we will use a definition given by
Devaney in [5, p. 50], which we restate here for convenience:

“Let V be a set. f : V → V is said to be chaotic in V if

1. f has sensitive dependence on initial conditions.

2. f is topologically transitive.

3. periodic points are dense in V .”

Condition 1 in this definition of chaos is a statement of the intrinsic unpredictability of chaotic
systems. This is despite Condition 3, which requires that the system retains some form of regularity.
Condition 2 further requires that a chaotic system cannot be decomposed into multiple subsystems.
For further discussion, as well as mathematical definitions of each condition, refer to [5, pp. 49–50].

In practice, such complex definitions are often ignored and chaos is described only in terms of
Condition 1 [3, pp. 65]. While sensitive dependence on initial conditions is often thought of as a
fundamental property of chaos, it was shown that (in certain circumstances) this property can be
derived from Conditions 2 and 3 in Devaney’s definition [6]. It is therefore not surprising that a
universal definition of chaos has yet to be accepted. Nevertheless, when we discuss how to quantify
the chaoticity of dynamical systems in Section 2.3, we will also focus our attention on this property
of sensitive dependence on initial conditions.

2 Klein-Gordon Model

2.1 Definitions

Of interest to us is the 1D disordered quartic KG model studied (for example) in [7]. This lattice
model has the Hamiltonian

H(~q, ~p) =
N∑
i=0

[
p2
i

2
+
εi
2
q2
i +

q4
i

4
+

1

2W
(qi+1 − qi)2

]
, (2)

where qi is the displacement from equilibrium of the ith lattice site and pi is its momentum conjugate,
W is the disorder strength, and N is the number of coupled oscillators. Each εi is a disorder
parameter chosen uniformly at random from the interval [1 −∆, 1 + ∆], where ∆ ≥ 0 defines the
disorder radius. For this model, we use the fixed boundary conditions q0 = qN+1 = p0 = pN+1 = 0,
analogous to the fixed walls in Figure 1.

Inside the summation of equation (2), notice that the first term is the kinetic energy of a
particular lattice site, the second and third terms form the on-site potential, and the last term is
the coupling potential between neighbouring oscillators. Therefore, this model represents a specific
case of the physical system depicted earlier in Figure 1.
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We define the normalised energy distribution ξi for the ith lattice site as the energy of that
lattice site divided by the total energy H of the lattice. For the KG lattice, this is given by [7]

ξi =
1

H



p2
1

2
+
ε1
2
q2

1 +
q4

1

4
+

1

4W
(q2 − q1)2 +

1

2W
q2

1, for i = 1

p2
i

2
+
εi
2
q2
i +

q4
i

4
+

1

4W
(qi+1 − qi)2 +

1

4W
(qi − qi−1)2, for 1 < i < N

p2
N

2
+
εN
2
q2
N +

q4
N

4
+

1

4W
(qN − qN−1)2 +

1

2W
q2
N , for i = N.

(3)

As seen in this definition, we have made the choice that the energy belonging to a site is comprised of
the site’s kinetic energy, its on-site potential, and half of its coupling potential with each neighbour.
The endpoints of the lattice (sites 1 and N) are an exception, as they contain all the energy in the
coupling potential with their adjacent boundaries.

Now ξi is a normalised distribution with respect to the lattice in the sense that
∑N

i=1 ξi = 1.

Therefore, we can define the mean ī =
∑N

i=1 iξi of the energy distribution as we would with a
statistical distribution. From this, we define quantities which describe the spread of energy in the
lattice, namely the second moment m and the participation number P (see e.g. [7]):

m =

N∑
i=1

(i− ī)2ξi, P =

(
N∑
i=1

ξ2
i

)−1

. (4)

The second moment m is in fact the statistical variance of the distribution. The less well-known
quantity P is a number which varies between 1 when all energy is contained within a single lattice
site and N when all lattice sites share the energy equally. Hence, the participation number is in
some sense an indicator of how many lattice sites “participate” in the sharing of energy, as the
name would suggest.

2.2 Equations of Motion and Variational Equations

Calculating Hamilton’s equations (1) from the KG Hamiltonian (2) yields the equations of motion:

dqi
dt

= pi

dpi
dt

= −
[
εiqi + q3

i +
1

W
(2qi − qi−1 − qi+1)

]
,

(5)

where 1 ≤ i ≤ N .
Consider now a point ~x = (~q, ~p)T on some orbit in the system’s phase space, and consider a

small deviation from this orbit, δ~x = (δ~q, δ~p)T . The evolution of this deviation vector over time is
given by the so-called variational equations, defined (for example) in [3, pp. 69–70]. Calculating the
variational equations from the KG Hamiltonian results in

d(δqi)

dt
= δpi, for 1 ≤ i ≤ N

d(δpi)

dt
= −


(ε1 + 3q2

1)δq1 +
1

W
(2δq1 − δq2), for i = 1

(εi + 3q2
i )δqi +

1

W
(2δqi − δqi−1 − δqi+1), for 1 < i < N

(εN + 3q2
N )δqN +

1

W
(2δqN − δqN−1), for i = N.

(6)
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These results for the equations of motion and the variational equations can also be found in [8],
where the same KG Hamiltonian is studied.

2.3 Measuring Chaoticity

In order to quantify how chaotic a dynamical system is, we use the fact that chaotic systems exhibit
sensitive dependence on initial conditions (recall Section 1.3). The maximum Lyapunov Exponent
(MLE) is defined as (see e.g. [3, pp. 92–93])

Λ = lim
t→∞

Λ(t) = lim
t→∞

1

t
ln
||δ~x(t)||
||δ~x(0)||

, (7)

where Λ(t) is the finite time MLE, δ~x(0) is a randomly chosen initial deviation vector from an orbit
in the phase space, and δ~x(t) is the deviation vector at some later time t. Loosely speaking, the
MLE for an orbit is the rate of exponential growth of infinitesimally small deviations from that
orbit. For regular orbits whose deviation vectors grow at a polynomial rate, their finite time MLEs
tend to zero according to the power law Λ ∝ t−1 (asymptotically). On the other hand, chaotic
orbits have positive MLEs [3, p. 65] as a result of an exponential growth rate of deviation vectors.
For the KG model, however, we will be interested in a regime of chaos called weak chaos [9][10]
for which the finite time MLE also approaches zero, though at a slower rate than for regular orbits
[7][11].

Using the deviation vector δ~x evaluated at some point in time, we can determine how much each
site of the KG lattice contributes to the overall deviation by computing the so-called normalised
deviation vector distribution (DVD) [11]:

ξDi =
δq2
i + δp2

i∑N
j=1(δq2

j + δp2
j )
, (8)

where 1 ≤ i ≤ N . Since the largest components of δ~x are the greatest contributors to the MLE,
the DVD is a good indicator of which regions of the lattice are the most chaotic at any moment in
time.

2.4 Research on Chaotic Diffusion

In [7][9][10], the diffusion of energy through a KG lattice was studied. In particular, a single-site
excitation was used, where only the middle site of the lattice was given energy initially (purely in
the form of kinetic energy). Using W = 4, ∆ = 0.5, and a total energy of H = 0.4, it was shown
that such a KG lattice exhibits weak chaos. Furthermore, by computing the state of the system up
to a final time of 108 time units, they showed that the second moment, participation number, and
MLE obeyed the following power laws (asymptotically): m ∝ t1/3, P ∝ t1/6, Λ ∝ t−1/4.

We wish to build on the research in [7] by exploring how changing the value of the disorder
radius ∆ affects the behaviour of m, P , and Λ. In particular, we decrease the value of ∆ from
0.5 in order to approach the dynamics of an ordered lattice, i.e. ∆ = 0. As we will see, however,
computing the state of the KG lattice for times up to 107 units with a small ∆ value requires a
large lattice size N , since we must avoid energy reaching the boundaries of the lattice. This in turn
requires a long time to compute. The following values for the disorder radius are studied in this
thesis: ∆ ∈ {0.08, 0.09, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5}, where smaller values of ∆ are not used due to the
long computation time needed.
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3 Computational Methods

3.1 Symplectic Integration

We now address issues of numerical integration of autonomous Hamiltonian systems. To quantify
the numerical error of such integration schemes, we define the absolute relative energy error Er as

Er =

∣∣∣∣H −H0

H0

∣∣∣∣ , (9)

where H0 is the initial value of the Hamiltonian and H is the computed value of the Hamiltonian at
some later time. Now for autonomous Hamiltonian systems, the value of H should remain constant
over time [12, p. 67], thus any non-zero value of Er must be a result of numerical error in the
computation. Er can therefore be used as an indicator of the accuracy of such computations.

Many general-purpose numerical integration schemes (e.g. Runge-Kutta 4th order [13, p. 288])
yield values of Er which grow unbounded in time, making them unsuitable for solving autonomous
Hamiltonian systems over long periods of time. We therefore use symplectic integrators (SIs) in our
study, which are numerical schemes for solving autonomous Hamiltonian systems with the property
that they keep the value of Er bounded [14], ensuring the integrity of the results.

We now demonstrate the application of a particular symplectic integration scheme to the KG
model, namely the ABA864 [15] scheme. From the KG Hamiltonian given in (2), we see that it can
easily be split into two parts, A and B, such that H = A+B. We use the following splitting of H:

A(~p) =
N∑
i=0

p2
i

2
,

B(~q) =
N∑
i=0

[
εi
2
q2
i +

q4
i

4
+

1

2W
(qi+1 − qi)2

]
.

(10)

Notice that A is only a function of ~p, while B is only a function of ~q. If we treat A as a Hamiltonian
by itself, we can calculate the equations of motion and the variational equations for A, which
together form the following system:

dqi
dt

= pi

dpi
dt

= 0

d(δqi)

dt
= δpi

d(δpi)

dt
= 0,

(11)

where 1 ≤ i ≤ N . This system may be written simply as d~u/dt = LAV ~u, where ~u = (~q, ~p, ~δq, ~δp)T

and LAV is the operator on the combined system. The solution of this equation follows readily:
~u(t) = etLAV ~u(0). Defining ~u′ = ~u(τ) for some time step τ , we can write this solution in full:

q′i = qi + τpi

p′i = pi

δq′i = δqi + τδpi

δp′i = δpi,

(12)
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where 1 ≤ i ≤ N . Therefore, we have analytically solved the Hamiltonian system described by A.
By similarly treating B as a Hamiltonian, we get the following combined system of equations

of motion and variational equations:

dqi
dt

= 0, for 1 ≤ i ≤ N

dpi
dt

= −


ε1q1 + q3

1 +
1

W
(2q1 − q2), for i = 1

εiqi + q3
i +

1

W
(2qi − qi−1 − qi+1), for 1 < i < N

εNqN + q3
N +

1

W
(2qN − qN−1), for i = N

d(δqi)

dt
= 0, for 1 ≤ i ≤ N

d(δpi)

dt
= −


(ε1 + 3q2

1)δq1 +
1

W
(2δq1 − δq2), for i = 1

(εi + 3q2
i )δqi +

1

W
(2δqi − δqi−1 − δqi+1), for 1 < i < N

(εN + 3q2
N )δqN +

1

W
(2δqN − δqN−1), for i = N,

(13)

which can be abbreviated as d~u/dt = LBV ~u. Defining ~u′ = ~u(τ), we may similarly write the
analytical solution ~u(t) = etLBV ~u(0) in full:

q′i = qi, for 1 ≤ i ≤ N

p′i = pi − τ


ε1q1 + q3

1 +
1

W
(2q1 − q2), for i = 1

εiqi + q3
i +

1

W
(2qi − qi−1 − qi+1), for 1 < i < N

εNqN + q3
N +

1

W
(2qN − qN−1), for i = N

δq′i = δqi, for 1 ≤ i ≤ N

δp′i = δpi − τ


(ε1 + 3q2

1)δq1 +
1

W
(2δq1 − δq2), for i = 1

(εi + 3q2
i )δqi +

1

W
(2δqi − δqi−1 − δqi+1), for 1 < i < N

(εN + 3q2
N )δqN +

1

W
(2δqN − δqN−1), for i = N.

(14)

These results for the two part splitting of the KG Hamiltonian into A and B can also be found in
[8].

Using the so-called tangent map method [16], a symplectic integration scheme involving succes-
sive applications of the operators eτLAV and eτLBV can be used to numerically solve both Hamilton’s
equations and the variational equations together. The symplectic integrator ABA864 can be used
to numerically integrate the KG system in this manner, and is defined as

ABA864(τ) = ea1τLAV eb1τLBV ea2τLAV eb2τLBV ea3τLAV eb3τLBV ea4τLAV

× eb4τLBV ea4τLAV eb3τLBV ea3τLAV eb2τLBV ea2τLAV eb1τLBV ea1τLAV
(15)
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where the coefficients ai and bi are given in [15], which we restate here:

a1 = 0.0711334264982231177779387300061549964174

a2 = 0.241153427956640098736487795326289649618

a3 = 0.521411761772814789212136078067994229991

a4 = −0.333698616227678005726562603400438876027

b1 = 0.183083687472197221961703757166430291072

b2 = 0.310782859898574869507522291054262796375

b3 = −0.0265646185119588006972121379164987592663

b4 = 0.0653961422823734184559721793911134363710.

(16)

This SI in particular was determined in [8] to be the most efficient SI for integrating the KG
system when compared with numerous other established SIs. We therefore use ABA864 exclusively
in computations involving numerical integration which follow, as it is both an efficient scheme and
its symplectic nature keeps the value of Er appropriately bounded.

3.2 Optimising Python

All computations for this thesis were done using the Python 3.7 programming language [17]. As
Python is an interpreted, general-purpose language, it suffers the fate of being slower at some
numerical tasks than other languages like Fortran, which are better suited to such computations.
In order to perform efficient computations, it was therefore necessary to optimise our Python codes
in order to approach the speed of Fortran and similar languages. While many techniques were used
to increase the speed of our codes, the two most effective ones were vectorisation and compilation.
Only these will be discussed.

In order to numerically integrate the equations of motion and the variational equations, the
symplectic integrator ABA864 defined in equation (15) was implemented at each time step of the
computation. As an example, here is a Python code snippet of the implementation we used:

1 import numpy

2 from numba import jit

3

4 @jit

5 def ABA864(dt, X):

6 X[0] = X[0] + X[1]*a1*dt

7 X[2] = X[2] + X[3]*a1*dt

8 X[1,1:-1] = X[1,1:-1] - (eps*X[0,1:-1] + X[0,1:-1]**3 + (2*X[0,1:-1] -

X[0,:-2] - X[0,2:])/W)*b1*dt↪→

9 X[3,1:-1] = X[3,1:-1] - (eps*X[2,1:-1] + 3*X[2,1:-1]*X[0,1:-1]**2 +

(2*X[2,1:-1] - X[2,:-2] - X[2,2:])/W)*b1*dt↪→

10 X[0] = X[0] + X[1]*a2*dt

11 X[2] = X[2] + X[3]*a2*dt

12 X[1,1:-1] = X[1,1:-1] - (eps*X[0,1:-1] + X[0,1:-1]**3 + (2*X[0,1:-1] -

X[0,:-2] - X[0,2:])/W)*b2*dt↪→

13 X[3,1:-1] = X[3,1:-1] - (eps*X[2,1:-1] + 3*X[2,1:-1]*X[0,1:-1]**2 +

(2*X[2,1:-1] - X[2,:-2] - X[2,2:])/W)*b2*dt↪→

14 ... # steps omitted for brevity

15 return X

9



The function ABA864 defined in Line 5 takes the time step dt as input, as well as the array X

which consists of the vectors ~q, ~p, δ~q and δ~p, respectively.1 In Lines 6–7 we apply ea1τLAV to the
current state, in Lines 8–9 we apply eb1τLBV to the current state, in Lines 10–11 we apply ea2τLAV

to the current state, and so on until all steps comprising ABA864 have been performed, after which
the final state X is returned in Line 15. Compare each of these steps to equations (12) and (14),
and the overall function to (15). Note that eps is a vector containing the disorder parameters εi
for each lattice site. The ABA864 function is then repeated in a loop, propagating the state forward
in time by dt in each step.

The first optimisation technique we applied in this code was that of vectorisation. Notice that
each line of the ABA864 function is a vector equation, and the only operations used are addition
and multiplication of vectors (component-wise). The Python library which provides the array data
structure and the appropriate methods for this purpose is called NumPy [18], imported in Line 1.
One complication in the vectorisation process was the fact that (14) requires adding and subtracting
different components of the same vector, e.g. (2qi − qi−1 − qi+1). This was coded in a vectorised
way by simply slicing the appropriate vector in different ways and adding/subtracting the results,
e.g. (2*X[0,1:-1] - X[0,:-2] - X[0,2:]). By completely vectorising these steps (as in the code
snippet) as opposed to computing each vector component separately using loops, the computation
time required by our implementation of the ABA864 integrator in Python was reduced by an order
of magnitude.

Despite vectorising our Python code as far as possible, it was still found to take an order of
magnitude longer to execute than comparable codes written in Fortran. The other main optimisation
technique which was then used was the runtime compilation of the ABA864 function. The library
Numba is a just-in-time (JIT) compiler which translates Python functions into efficient machine
code at runtime [19]. This compiler was used in the code snippet by importing numba in Line 2
and adding the decorator @jit in Line 4 before the ABA864 function. After using this compiler, the
time taken for our Python code to execute was found to be on the same order of magnitude as
comparable code written in Fortran. It should be noted, however, that Numba incurs some time
overhead, so its use is more appropriate for long computations because this overhead may actually
slow down short computations.

3.3 Even Spacing in Log Scale

In order to easily discern power laws from the types of results we will deal with in later sections, it
is often convenient to present data in logarithmic (log) scale. Saving only the relevant data in such
a scale requires some additional code which we discuss here.

Consider the time interval [100, 103] units with a time step of 1 unit. Imagine performing some
computations and saving the results at each time step in this interval. In log scale (base 10), the
points in time at which data are saved for such a system are plotted on a number line in Figure 2.
Notice that in this scale the saved points in time become so dense near the end of the time line
that they are indistinguishable from their neighbours.

These data can instead be represented more sensibly in log scale by storing values at, say, only
100 points in time during the computation.2 We choose these 100 points to be evenly spaced in log
scale, as opposed to evenly spaced in linear scale. Such an ideal spacing of these (approximately)
100 points is given in Figure 3. Notice that, in this case, as soon as the gap between consecutive

1However, these vectors also contain components for the boundaries of the lattice, indexed as sites 0 and N + 1.
This was only done for convenience when coding; these components are not important for the computation.

2We only use 100 points here for demonstration purposes. When we present computation results later, we use 1000
points for a higher resolution.
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time steps becomes too small in log scale, these points in time are repeatedly skipped over until the
next point in time is appropriately spaced (in log scale) from the previously saved point. Thus our
set of saved points in Figure 3 is less dense and more evenly spaced than before. Another advantage
of such a restriction is the reduced number of times at which certain computations are done, and
hence this may speed up some codes significantly.

100 101 102 103

Time

Figure 2: Number line (in log scale) of each time step over the interval [100, 103].

100 101 102 103

Time

Figure 3: Number line of approximately 100 points in time spaced evenly in log scale over the
interval [100, 103].

How do we code the ideal spacing given in Figure 3? Since we are only interested in selecting
100 evenly spaced points in log scale from the interval [100, 103], the ideal times t which we select
would be when log10 t = 3k/100 for any integer k ∈ [0, 100]. This would produce a perfectly even
spacing in log scale by dividing the interval of length 3 (in log scale) into 100 equal sub-intervals.
In practice, however, this equality would never be satisfied exactly, therefore we instead take note
of when the value of log10 t changes from less than 3k/100 to greater than 3k/100. A Python code
snippet of the algorithm described is given here:

1 from numpy import log10

2 k = 0

3 for t in range(1,10**3):

4 if log10(t) >= 3*k/100:

5 # do necessary computations here

6 while log10(t) >= 3*k/100:

7 k = k + 1

Once the condition log10(t) >= 3*k/100 in Line 4 is satisfied for some time t, we may perform
all necessary computations and save relevant data at that point in time. In Lines 6–7, we increment
k until log10(t) >= 3*k/100 is no longer true before increasing the time t and repeating the
process.

4 Linear System: Normal Mode Analysis

4.1 Linear KG Model

Before explicitly computing the evolution of a wave packet through a KG lattice, we first examine
a linear version of the KG model. By studying how normal modes are distributed in the linear
lattice, we aim to understand and predict how energy diffuses in the (nonlinear) KG lattice.
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We begin by linearising the KG lattice model. This is done by simply omitting the quartic
potential terms in the KG Hamiltonian (2), since these are the terms of the Hamiltonian which
produce the nonlinearity in the equations of motion. For small oscillations of the lattice sites,
however, we can approximate the behaviour of the KG lattice by studying the linearised version
which has the Hamiltonian

H(~q, ~p) =
N∑
i=0

[
p2
i

2
+
εi
2
q2
i +

1

2W
(qi+1 − qi)2

]
. (17)

This lattice is the 1D disordered linear Klein-Gordon (LKG) model. Without the nonlinearity, note
that the LKG lattice is nothing but a chain of disordered coupled harmonic oscillators, a system
which we can solve explicitly.

4.2 Normal Modes

Using Hamilton’s equations (1), the LKG Hamiltonian yields the following equations of motion:

dqi
dt

= pi

dpi
dt

= −
[
εiqi +

1

W
(2qi − qi−1 − qi+1)

] (18)

where 1 ≤ i ≤ N . This can be reduced from a system of 2N first-order differential equations to N
second-order differential equations,

d2qi
dt2

= −
[
εiqi +

1

W
(2qi − qi−1 − qi+1)

]
. (19)

The resulting linear system can be written simply as a vector equation,

d2~q

dt2
= Ω~q, (20)

where Ω is the tridiagonal matrix

Ω =



− 2

W
− ε1

1

W
0 · · · 0

1

W
− 2

W
− ε2

1

W

. . .
...

0
1

W
− 2

W
− ε3

. . . 0

...
. . .

. . .
. . .

1

W

0 · · · 0
1

W
− 2

W
− εN


. (21)

Now Ω has eigenvalues λk, as well as normalised eigenvectors ~vk which are the so-called normal
modes of the LKG system [10]. Since Ω is Hermitian, its eigenvectors form a complete eigenbasis,
and hence the solution of (20) can be written in the form ~q =

∑
k q̂k~vk, where q̂k are components of

the solution in the eigenbasis. Since equation (20) reduces to d2q̂k/dt
2 = λkq̂k in the eigenbasis, each

q̂k has either a sinusoidal, linear, or exponential solution (depending on whether λk is negative, zero,
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or positive). Despite the intrinsic randomness of the matrix Ω, we show in the following paragraph
that each of its eigenvalues λk are negative in this case and hence each q̂k is sinusoidal.

Assume, to the contrary, that one of the eigenvalues λj of Ω is non-negative. Since we only use
values of ∆ < 1, it follows that 0 < εi < 2, and hence all terms in the LKG Hamiltonian are non-
negative. However, since q̂j corresponds to a non-negative eigenvalue λj , its solution will be either
linear or exponential, and such terms would be present in linear combinations when converting
this solution back into lattice coordinates. Such unbounded solutions would cause some terms in
the LKG Hamiltonian to diverge over time, and hence the entire Hamiltonian would also diverge
since it contains no negative terms to counter the divergence. This contradicts the fact that the
Hamiltonian is conserved. Therefore, Ω only has negative eigenvalues.

4.3 Results

For an LKG lattice of sizeN = 1001 sites and disorder strengthW = 4, we computed the eigenvalues
and eigenvectors of Ω for each disorder radius ∆ ∈ {0.08, 0.09, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5}. This was
done using an algorithm designed for tridiagonal matrices [20]. Each eigenvector ~vk corresponds to
a normal mode, and its components vki give the contributions of each lattice site to that normal
mode. Since each ~vk is normalised, it follows that

∑
i v

2
ki = 1. Therefore, we call the quantity v2

ki

a normal mode distribution, since it describes the distribution of lattice sites participating in the
kth normal mode.

In the case of ∆ = 0.5, we plot each normal mode distribution v2
ki over the lattice in Figure 4

for a single disorder realisation of εi values. For clarity of demonstration, we only plot 30 random
normal mode distributions, since all 1001 distributions would make the figure too dense to be useful.
We see from Figure 4 that each normal mode is localised within the lattice, a phenomenon known
as Anderson localisation [21].

0 200 400 600 800 1000
i

6

5

4

3

2

1

0

lo
g 1

0v
2 ki

Figure 4: Plot of normal mode distributions v2
ki (in log scale) against lattice sites i for 30 normal

modes. Due to limited choices, some distinct distributions share the same colour.

For each normal mode distribution v2
ki, we can compute its distribution mean īk, participation

number Pk, and its second moment mk. Note that the definitions of mk and Pk are the same as
in equations (4), except we replace the energy distribution ξi with v2

ki. In Figure 5(a) we plot the
value of mk for each normal mode distribution against its corresponding mean īk. This is done for
each ∆ value of interest, using a random disorder realisation in each case. From this figure we see
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that normal modes centred around sites near the middle of the lattice tend to have larger values
of mk. This may be partially explained by the fact that normal mode distributions centred around
sites near the tails of the lattice cannot have large spreads because of the nearby boundary. Centred
near the middle of the lattice, however, the spread of each normal mode distribution does not have
this constraint.

Figure 5(a) also indicates that mk values tend to increase on average and have a greater spread
as ∆ decreases. To see this more clearly, we compute the mean m of the second moment values
mk corresponding to each value of ∆. We also compute the spread of each set of mk values using
the standard deviation (SD). A plot of m against ∆ is given in Figure 5(b), where error bars
indicate one SD from m. For consistency and convenience, we use the same colour-code for points
corresponding to the same ∆ value in both Figures 5(a) and (b), and we will maintain this colour
scheme in all figures which follow.
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Figure 5: (a) Plot of second moment mk of normal mode distribution v2
ki against the distribution

mean īk, where each colour represents a value of ∆ given in the legend of (b). (b) Plot of mean
second moment m against disorder radius ∆. Error bars indicate one SD from m.

Similarly, we plot Pk against īk in Figure 6(a). Here we see qualitatively similar results to that
of mk. We also plot the mean P of the participation number values Pk for each value of ∆ in
Figure 6(b), with error bars indicating one SD from P . Clearly, both the spread and mean of each
set of Pk values increase as ∆ decreases.

What we can conclude from these results is that normal mode distributions (on average) involve
more lattice sites and are spread over larger regions of the lattice as we decrease ∆ and approach
an ordered LKG lattice. Since any excitation of the lattice is built from a linear combination of
normal modes, this would suggest that the number of normal modes used to describe a single-site
excitation of the lattice increases as we approach an ordered system.

For a single-site excitation of a (nonlinear) KG lattice, these results suggest that energy diffuses
through such a lattice at a greater rate for smaller ∆ values, since in the linear system such an
excitation involves many poorly localised normal modes. In the next section we will study the
diffusion of energy in nonlinear KG lattices.
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Figure 6: (a) Plot of participation number Pk of normal mode distribution v2
ki against the distri-

bution mean īk, where each colour represents a value of ∆ given in the legend of (b). (b) Plot of
mean participation number P against disorder radius ∆. Error bars indicate one SD from P .

5 Nonlinear System: Wave Packet Evolution

5.1 Lattice Sizes

In order to simulate the diffusion of energy through an infinite KG lattice, we chose the lattice size
N in our computations to be large enough so that the energy at the tails (i.e. lattice sites near the
boundaries) was negligibly small. The energy at the tails, ET , was computed by calculating the
energy distribution ξi at the first 5 sites and the last 5 sites of the lattice chain, and then taking the
mean of those values. In each computation, the lattice size was chosen to be as small as possible
while ensuring that ET < 10−12 for the duration of the computation.

For each value of ∆ used in our computations, we give the precise lattice size used in Table 1.
We also give a plot of this relationship in Figure 7 together with the power law N = 130∆−1.9

fitted to the plotted points. From this it is clear that as we approach an ordered system of ∆ = 0,
the required lattice size for our computations diverges. As we will see, this is a result of energy
spreading to the tails of the lattice faster as ∆ decreases. Since the computation time scales with
the lattice size of the system, using smaller values of ∆ would require significantly more CPU time.

∆ 0.08 0.09 0.1 0.15 0.2 0.3 0.4 0.5

N 16001 12501 10001 4701 2801 1201 701 501

Table 1: Lattice size N required for each value of the disorder radius ∆.

5.2 Parameters and Initial Conditions

With the aim of building on the research of [7], we performed computations with the disorder
strength set to W = 4 for a single-site excitation of the KG lattice with total energy H = 0.4,
since these were the values used in that paper (in particular for the weak chaos regime). Un-
like in the paper, however, we performed computations for multiple disorder parameters, namely
∆ ∈ {0.08, 0.09, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5}. For each disorder realisation, the disorder parameters
εi corresponding to each site were sampled uniformly at random from the interval [1 −∆, 1 + ∆].
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Figure 7: Plot of required lattice size N against
disorder radius ∆. The dotted line is a fit of the
power law N = 130∆−1.9 to the plotted points.

However, we made an exception for the middle site of the lattice (the only site to be given en-
ergy initially), which we always gave a disorder parameter value of precisely 1 to ensure the initial
behaviour of the middle site was consistent across disorder realisations.

We now address the method used to initiate a single-site excitation in the KG lattice. The
energy of H = 0.4 was given to the middle site of the lattice in the form of kinetic energy, i.e. the
initial displacement of the middle site was set to zero, while its initial momentum was set to ±

√
2H.

The sign of the momentum (which determines the direction of motion) was chosen randomly in
each case. All other sites were initiated with zero displacement and momentum.

The deviations δ~q and δ~p were initialised by choosing the components of these vectors uniformly
at random from the interval [−1, 1]. However, these components were only chosen for sites near the
middle of the lattice, in particular the 11 central sites of the lattice centred on the middle site. All
other components of the deviation vectors were initialised to zero. After this, each vector δ~q and
δ~p was independently normalised.

In each case, we performed computations up to 107 time units. A time step of τ = 0.5 was used
throughout, as this was found to bound the absolute relative energy error Er by approximately
10−5, which is usually deemed an acceptable level of accuracy in such computations [8]. To show
that Er is indeed bounded appropriately, in Figure 8 we give a plot of Er over time using τ = 0.5 for
a single disorder realisation of each of the extreme cases of disorder radius: ∆ = 0.08 and ∆ = 0.5.
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Figure 8: Plot of absolute relative energy error Er
against time t (in log-log scale) for a single disor-
der realisation with each of ∆ = 0.08 (in blue)
and ∆ = 0.5 (in grey).
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5.3 Profile of Energy Distribution and DVD

We can visualise the spreading of a wave packet of energy through the KG lattice over time by
plotting the energy distribution ξi at various points in time during the computation. This is done
in Figure 9(a) for a random disorder realisation with disorder radius ∆ = 0.5 (all other parameters
and initial conditions are given in Section 5.2). In this case, the lattice size is N = 501, with the
middle site at i = 251. From this it is clear that the energy distribution continually spreads through
the lattice until the final time computed of 107 units, which is in agreement with comparable results
given in [7] for ∆ = 0.5. This is in contrast to the LKG model which has the property of Anderson
localisation [21] which prevents the energy distribution from delocalising further after some time.
From Figure 9(a), it appears that Anderson localisation does not occur in the nonlinear KG model
(within the time limit of our computation).

The evolution of the DVD over time (for the same disorder realisation) may also be visualised
in a similar way. This is given in Figure 9(b). We see from the figure that the DVD barely spreads
between times 103 and 107, maintaining a pointy triangular profile. This persistent localisation of
the DVD is in agreement with results presented in [7][11].

These results are expanded on in Section 5.4 where we study the second moment and partici-
pation number corresponding to these distributions.
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Figure 9: Plot of (a) energy distribution ξi and (b) DVD ξDi (each in log scale) against the lattice
sites i for a random disorder realisation of a single-site excitation with ∆ = 0.5. In both figures, a
plot is given for each of the times t ≈ 103 (in red), t ≈ 105 (in green), and t ≈ 107 (in blue).

5.4 Diffusion and Chaoticity Results

Using the parameters and initial conditions from Section 5.2, we performed computations for 20
random disorder realisations of the KG lattice with each value of ∆. By repeating computations
for many disorder realisations, our results could be averaged to yield more accurate estimates
from the data. We note, however, that a few disorder realisations invariably yielded misbehaving
results, where the values of m, P , or Λ evolved significantly differently to the corresponding average.
Such misbehaving realisations were removed from our sample and replaced with realisations which
behaved.

Consider now the second moment mj computed using the jth disorder realisation. By taking the
mean of these values mj across realisations, we produce a better estimate of the second moment,
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which we call 〈m〉. Now, since we will be presenting the results in log-log scale, the quantity we are
interested in is actually log10〈m〉. However, in order to determine the rate of change of log10〈m〉 in
log scale, we will need to differentiate it with respect to log time, log10 t. This is an issue, since such
computational results are generally not smooth enough to be directly differentiated numerically.
Therefore, we first smooth the log10〈m〉 curve over time using a LOWESS smoothing algorithm
[22]. We call this smoothed curve 〈log10〈m〉〉, and we plot it against time in Figure 10(a). Following
exactly same procedure for the participation number P , we plot the smoothed logarithm of the
mean participation number 〈log10〈P 〉〉 in Figure 10(b).
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Figure 10: Plots of the smoothed logarithm of (a) mean second moment 〈m〉 and (b) mean partic-
ipation number 〈P 〉 against log time log10 t for each disorder radius value ∆.

In order to describe the slopes of each curve in Figure 10, we define the slope of the quantity A
in log-log scale as follows [7]:

αA =
d〈log10〈A〉〉
d(log10 t)

, (22)

where A is the quantity of interest (m or P , in this case). Since the slope of each curve in the figure
appears to tend to a constant, it follows that the evolution of m and P over long periods of time
are governed by the power laws m ∝ tαm and P ∝ tαP . We will soon discuss how αm and αP vary
with respect to ∆, but for now we simply note that from Figure 10 alone it appears that the slopes
αm and αP do not vary significantly with respect to ∆. Now we see from these figures for m and
P that as ∆ decreases, the curves are shifted upwards in the respective plots. As the plots are in
log-log scale, this upward translation corresponds to an increase in the proportionality factor of the
power laws given for m and P . Therefore, we see that both m and P grow at faster rates over the
time period computed when ∆ is decreased. In other words, energy diffuses faster in more ordered
KG lattices. These results agree with our prediction in Section 4 from our analysis of the normal
modes of LKG lattices.

Upon closer inspection of Figure 10, however, it is clear that there is some small variation
between slopes with different disorder radii. To see this, we plot αm and αP over time for each ∆ in
Figures 11(a) and (b), respectively. From the plots, it is clear that both αm and αP have different
values near the final time 107 for each ∆. To determine this relationship, we first estimate a final
value for these quantities. Instead of simply taking the value at the final time 107, we take the mean
of each of αm and αP over the interval [106.5, 107]. We plot these end-averaged values of αm and αP
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against ∆ in Figure 12. These results suggest that both αm and αP increase initially as ∆ decreases
from 0.5, but then decrease again as ∆ approaches 0.1. However, such a relationship would imply
that, over very long times, energy diffuses through a more ordered KG lattice of ∆ ≈ 0.1 more
slowly than in slightly less ordered lattices of ∆ ≈ 0.3, contrary to our expectations from the LKG
normal mode analysis. Nevertheless, without a clearer trend, the long-term relationship between
each slope and ∆ is inconclusive.
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Figure 11: Plots of the slope (a) αm for the second moment and (b) αP for the participation number
over log time log10 t for each disorder radius value ∆.
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Figure 12: Plots of the end-averaged slope (a) αm for the second moment and (b) αP for the
participation number against the disorder radius ∆. Black lines are only for guiding the eye.

We now turn to the DVD second moment mD and DVD participation number PD. Computing
the relevant quantities for mD and PD in the same manner as done for m and P , we give completely
analogous plots in Figures 13, 14 and 15. Again we find that, due to the vertical shifts in the curves
of Figure 13, both mD and PD grow at faster rates as ∆ decreases, indicating faster spreading of
the DVD. However, we see from Figure 14 that the slope αDP is very near zero and αDm is also small,
which suggests a very slow diffusion of the DVD through the KG lattice in each of these cases. This
result agrees with what we observed in Section 5.3 and with comparable findings in [7]. However,
the relationship between each of the end-averaged slopes and ∆ in Figure 15 is inconclusive.
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Figure 13: Plots of the smoothed logarithm of (a) mean DVD second moment 〈mD〉 and (b) mean
DVD participation number 〈PD〉 against log time log10 t for each disorder radius value ∆.
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Figure 14: Plots of the slope (a) αDm for the DVD second moment and (b) αDP for the DVD partic-
ipation number over log time log10 t for each disorder radius value ∆.
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Figure 15: Plots of the end-averaged slope (a) αDm for the DVD second moment and (b) αDP for the
DVD participation number against disorder radius ∆. Black lines are only for guiding the eye.
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Performing the same analysis on the finite time MLE Λ(t), we produce analogous plots in
Figures 16 and 17. In this case, the relationship between the end-averaged slope αΛ and ∆ in
Figure 17 indicates that αΛ tends to increase with an increasing ∆. Therefore, it can be seen from
the power law Λ ∝ tαΛ that the finite time MLE decays faster for more ordered systems, suggesting
that more ordered KG lattices are less chaotic.
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Figure 16: Plots of (a) the smoothed logarithm of the mean finite time MLE 〈Λ〉 and (b) the slope
αΛ over log time log10 t for each disorder radius value ∆.
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Figure 17: Plot of the end-averaged slope αΛ for
the finite time MLE against the disorder radius
∆. Black lines are only for guiding the eye.

For ∆ = 0.5, it was determined in [7] using computations up to 108 that αm ≈ 1/3, αP ≈ 1/6,
and αΛ ≈ −1/4. In comparison, our computations up to 107 with ∆ = 0.5 for the end-averaged
slopes yielded the following estimates (to two significant figures): αm ≈ 0.31, αP ≈ 0.15, and
αΛ ≈ −0.22. While there is some small discrepancy between these values, our results for these
quantities appear to agree with the published results.

6 Discussion and Conclusion

Through analysing the normal modes of the LKG model in Section 4, we uncovered various proper-
ties of the normal mode distributions. In particular, it was determined that decreasing the disorder
radius ∆ resulted in an increase of the mean second moment and mean participation number of
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these distributions. As a result, it was predicted that for energy diffusing through a (nonlinear) KG
lattice, the second moment and participation number of the wave packet would also increase as we
approach an ordered lattice.

In Section 5, we excited a single site of the KG lattice for various values of ∆ and evolved the
system until a final time of 107 units. In the case of ∆ = 0.5, similar results to [7] were obtained
for the power laws governing m, P , and Λ evolution, with minor differences. It was also found that
when decreasing ∆, the rate of change of both m and P increased as expected while maintaining a
similar power law for each ∆. Upon closer inspection, however, the slopes αm and αP were found
to be dependent on ∆. Though these relationships could not be conclusively determined, this result
warrants further investigation, particularly using longer computations of at least 108.

The DVD was found to remain somewhat localised over the computed time period of 107. In
particular, the participation number of the DVD was found to remain practically constant over time,
suggesting that the number of lattice sites involved in deviations does not increase significantly over
time. The second moment was found to increase over time, though very slowly. This agrees with
similar findings in [7].

As for the effect of disorder on chaoticity, the slope αΛ for the finite time MLE was found to
decrease overall when decreasing ∆. This suggests that more ordered lattices are less chaotic than
less ordered lattices. A possible mechanism for this is as follows: since Λ(t) decreases as energy
diffuses through the lattice, the faster rate of decay of Λ(t) may be a result of the increased growth
rates of m and P for small disorder radii.
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